基于M-LSTM法的隧道围岩地质信息动态智能预测研究

在线阅读 下载PDF 导出详情
摘要 为提高隧道围岩地质信息智能化预测精度,以岩体完整性、岩石坚硬程度、富水情况、岩石风化程度和地应力状态作为地质信息的定量指标,通过收集隧道已开挖段的各类地质指标数据,并采用K-means聚类算法对数据进行清洗,得到隧道围岩各地质信息指标的高关联数据库.依据数据库样本,构建基于改进长短期记忆神经网络(M-LSTM)的隧道施工期围岩地质信息动态智能预测模型,根据对隧道已开挖段地质信息的智能学习实现对前方未开挖段地质信息时间序列数据的动态智能预测.结果表明,该方法得到的岩体完整性预测精度为91.6%,岩石坚硬程度预测精度为93.8%,富水情况预测精度为85.4%,岩石风化程度预测精度为85.4%,地应力状态预测精度为87.5%;M-LSTM法比LSTM法和普通神经网络(ANN)法具有更高的计算效率和精度.
出处 《现代隧道技术》 2025年1期
出版日期 2025-01-15(期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献